#include <string.h>
#include <signal.h>
#include <errno.h>
+#include <sys/wait.h>
#include <libwebsockets.h>
#include <json.h>
}
void
-pss_tty_free(struct pss_tty *pss) {
- uv_read_stop((uv_stream_t *) &pss->pipe);
- uv_close((uv_handle_t*) &pss->pipe, NULL);
- uv_signal_stop(&pss->watcher);
+pty_proc_free(struct pty_proc *proc) {
+ uv_read_stop((uv_stream_t *) &proc->pipe);
+ uv_close((uv_handle_t*) &proc->pipe, NULL);
- close(pss->pty);
+ close(proc->pty);
- // free the buffer
- if (pss->buffer != NULL) {
- free(pss->buffer);
- pss->buffer = NULL;
- }
- if (pss->pty_buffer != NULL) {
- free(pss->pty_buffer);
- pss->pty_buffer = NULL;
+ if (proc->pty_buffer != NULL) {
+ free(proc->pty_buffer);
+ proc->pty_buffer = NULL;
}
- for (int i = 0; i < pss->argc; i++) {
- free(pss->args[i]);
+ for (int i = 0; i < proc->argc; i++) {
+ free(proc->args[i]);
}
+
+ free(proc);
}
void
void
read_cb(uv_stream_t* stream, ssize_t nread, const uv_buf_t* buf) {
struct pss_tty *pss = (struct pss_tty *) stream->data;
- pss->pty_len = nread;
+ struct pty_proc *proc = pss->proc;
+ proc->pty_len = nread;
uv_read_stop(stream);
if (nread <= 0) {
if (nread == UV_ENOBUFS || nread == 0)
return;
- pss->pty_buffer = NULL;
+ proc->pty_buffer = NULL;
if (nread == UV_EOF)
- pss->pty_len = 0;
+ proc->pty_len = 0;
else
lwsl_err("read_cb: %s\n", uv_err_name(nread));
} else {
- pss->pty_buffer = xmalloc(LWS_PRE + 1 + (size_t ) nread);
- memcpy(pss->pty_buffer + LWS_PRE + 1, buf->base, (size_t ) nread);
+ proc->pty_buffer = xmalloc(LWS_PRE + 1 + (size_t ) nread);
+ memcpy(proc->pty_buffer + LWS_PRE + 1, buf->base, (size_t ) nread);
}
free(buf->base);
void
child_cb(uv_signal_t *handle, int signum) {
- struct pss_tty *pss;
pid_t pid;
- int status;
-
- pss = (struct pss_tty *) handle->data;
- status = wait_proc(pss->pid, &pid);
- if (pid > 0) {
- lwsl_notice("process exited with code %d, pid: %d\n", status, pid);
- pss->pid = 0;
- pss->pty_len = status > 0 ? -status : status;
- pss_tty_free(pss);
+ int stat;
+
+ struct pty_proc *proc;
+ LIST_HEAD(proc, pty_proc) *procs = handle->data;
+ LIST_FOREACH(proc, procs, entry) {
+ do
+ pid = waitpid(proc->pid, &stat, WNOHANG);
+ while (pid == -1 && errno == EINTR);
+
+ if (pid <= 0)
+ continue;
+
+ if (WIFEXITED(stat)) {
+ proc->status = WEXITSTATUS(stat);
+ lwsl_notice("process exited with code %d, pid: %d\n", proc->status, proc->pid);
+ } else if (WIFSIGNALED(stat)) {
+ int term_sig = WTERMSIG(stat);
+ proc->status = 128 + term_sig;
+ lwsl_notice("process killed with signal %d, pid: %d\n", term_sig, proc->pid);
+ }
+
+ LIST_REMOVE(proc, entry);
+ if (proc->state == STATE_KILL) {
+ pty_proc_free(proc);
+ } else {
+ proc->state = STATE_EXIT;
+ }
}
}
int
spawn_process(struct pss_tty *pss) {
+ struct pty_proc *proc = pss->proc;
// append url args to arguments
- char *argv[server->argc + pss->argc + 1];
+ char *argv[server->argc + proc->argc + 1];
int i, n = 0;
for (i = 0; i < server->argc; i++) {
argv[n++] = server->argv[i];
}
- for (i = 0; i < pss->argc; i++) {
- argv[n++] = pss->args[i];
+ for (i = 0; i < proc->argc; i++) {
+ argv[n++] = proc->args[i];
}
argv[n] = NULL;
- uv_signal_start(&pss->watcher, child_cb, SIGCHLD);
+ uv_signal_start(&server->watcher, child_cb, SIGCHLD);
// ensure the lws socket fd close-on-exec
fd_set_cloexec(lws_get_socket_fd(pss->wsi));
// create process with pseudo-tty
- pss->pid = pty_fork(&pss->pty, argv[0], argv, server->terminal_type);
- if (pss->pid < 0) {
+ proc->pid = pty_fork(&proc->pty, argv[0], argv, server->terminal_type);
+ if (proc->pid < 0) {
lwsl_err("pty_fork: %d (%s)\n", errno, strerror(errno));
return 1;
}
- lwsl_notice("started process, pid: %d\n", pss->pid);
+ lwsl_notice("started process, pid: %d\n", proc->pid);
- pss->pipe.data = pss;
- uv_pipe_open(&pss->pipe, pss->pty);
+ proc->pipe.data = pss;
+ uv_pipe_open(&proc->pipe, proc->pty);
lws_callback_on_writable(pss->wsi);
void
kill_process(pid_t pid, int sig) {
if (pid <= 0) return;
-
- // kill process (group) and free resource
- lwsl_notice("killing process %d with signal %d\n", pid, sig);
+ lwsl_notice("killing process %d with signal: %d\n", pid, sig);
int pgid = getpgid(pid);
if (kill(pgid > 0 ? -pgid : pid, sig) != 0) {
lwsl_err("kill: %d, errno: %d (%s)\n", pid, errno, strerror(errno));
callback_tty(struct lws *wsi, enum lws_callback_reasons reason,
void *user, void *in, size_t len) {
struct pss_tty *pss = (struct pss_tty *) user;
+ struct pty_proc *proc;
char buf[256];
size_t n = 0;
pss->authenticated = false;
pss->wsi = wsi;
pss->buffer = NULL;
- pss->pty_len = 0;
- pss->argc = 0;
- pss->loop = server->loop;
- uv_pipe_init(pss->loop, &pss->pipe, 0);
- uv_signal_init(pss->loop, &pss->watcher);
- pss->watcher.data = pss;
+ pss->proc = proc = xmalloc(sizeof(struct pty_proc));
+ memset(proc, 0, sizeof(struct pty_proc));
+ proc->status = -1;
+ proc->state = STATE_INIT;
+ uv_pipe_init(server->loop, &proc->pipe, 0);
if (server->url_arg) {
while (lws_hdr_copy_fragment(wsi, buf, sizeof(buf), WSI_TOKEN_HTTP_URI_ARGS, n++) > 0) {
if (strncmp(buf, "arg=", 4) == 0) {
- pss->args = xrealloc(pss->args, (pss->argc + 1) * sizeof(char *));
- pss->args[pss->argc] = strdup(&buf[4]);
- pss->argc++;
+ proc->args = xrealloc(proc->args, (proc->argc + 1) * sizeof(char *));
+ proc->args[proc->argc] = strdup(&buf[4]);
+ proc->argc++;
}
}
}
+ LIST_INSERT_HEAD(&server->procs, proc, entry);
server->client_count++;
lws_hdr_copy(wsi, buf, sizeof(buf), WSI_TOKEN_GET_URI);
break;
case LWS_CALLBACK_SERVER_WRITEABLE:
+ proc = pss->proc;
if (!pss->initialized) {
if (pss->initial_cmd_index == sizeof(initial_cmds)) {
pss->initialized = true;
- uv_read_start((uv_stream_t *)& pss->pipe, alloc_cb, read_cb);
+ uv_read_start((uv_stream_t *)& proc->pipe, alloc_cb, read_cb);
break;
}
if (send_initial_message(wsi, pss->initial_cmd_index) < 0) {
}
// read error or client exited, close connection
- if (pss->pty_len == 0) {
+ if (proc->status == 0 || proc->pty_len == 0) {
lws_close_reason(wsi, LWS_CLOSE_STATUS_NORMAL, NULL, 0);
return 1;
- } else if (pss->pty_len < 0) {
+ } else if (proc->status > 0 || proc->pty_len < 0) {
lws_close_reason(wsi, LWS_CLOSE_STATUS_UNEXPECTED_CONDITION, NULL, 0);
return -1;
}
- if (pss->pty_buffer == NULL)
+ if (proc->pty_buffer == NULL)
break;
- pss->pty_buffer[LWS_PRE] = OUTPUT;
- n = (size_t) (pss->pty_len + 1);
- if (lws_write(wsi, (unsigned char *) pss->pty_buffer + LWS_PRE, n, LWS_WRITE_BINARY) < n) {
+ proc->pty_buffer[LWS_PRE] = OUTPUT;
+ n = (size_t) (proc->pty_len + 1);
+ if (lws_write(wsi, (unsigned char *) proc->pty_buffer + LWS_PRE, n, LWS_WRITE_BINARY) < n) {
lwsl_err("write OUTPUT to WS\n");
}
- free(pss->pty_buffer);
- pss->pty_buffer = NULL;
- uv_read_start((uv_stream_t *)& pss->pipe, alloc_cb, read_cb);
+ free(proc->pty_buffer);
+ proc->pty_buffer = NULL;
+ uv_read_start((uv_stream_t *)& proc->pipe, alloc_cb, read_cb);
break;
case LWS_CALLBACK_RECEIVE:
return 0;
}
+ proc = pss->proc;
switch (command) {
case INPUT:
- if (pss->pty == 0)
+ if (proc->pty == 0)
break;
if (server->readonly)
return 0;
uv_buf_t b = { pss->buffer + 1, pss->len - 1 };
- int err = uv_try_write((uv_stream_t *) &pss->pipe, &b, 1);
+ int err = uv_try_write((uv_stream_t *) &proc->pipe, &b, 1);
if (err < 0) {
lwsl_err("uv_try_write: %s\n", uv_err_name(err));
return -1;
{
int cols, rows;
if (parse_window_size(pss->buffer + 1, &cols, &rows)) {
- if (pty_resize(pss->pty, cols, rows) < 0) {
+ if (pty_resize(proc->pty, cols, rows) < 0) {
lwsl_err("pty_resize: %d (%s)\n", errno, strerror(errno));
}
}
}
break;
case JSON_DATA:
- if (pss->pid > 0)
+ if (proc->pid > 0)
break;
if (server->credential != NULL) {
json_object *obj = json_tokener_parse(pss->buffer);
case LWS_CALLBACK_CLOSED:
server->client_count--;
lwsl_notice("WS closed from %s, clients: %d\n", pss->address, server->client_count);
- uv_read_stop((uv_stream_t *) &pss->pipe);
- kill_process(pss->pid, server->sig_code);
+ if (pss->buffer != NULL) {
+ free(pss->buffer);
+ }
+
+ proc = pss->proc;
+ if (proc->state == STATE_EXIT) {
+ pty_proc_free(proc);
+ } else {
+ proc->state = STATE_KILL;
+ uv_read_stop((uv_stream_t *) &proc->pipe);
+ kill_process(proc->pid, server->sig_code);
+ }
+
if (server->once && server->client_count == 0) {
lwsl_notice("exiting due to the --once option.\n");
force_exit = true;
--- /dev/null
+/*
+ * Copyright (c) 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)queue.h 8.5 (Berkeley) 8/20/94
+ */
+
+#ifndef _SYS_QUEUE_H_
+#define _SYS_QUEUE_H_
+
+/*
+ * This file defines five types of data structures: singly-linked lists,
+ * lists, simple queues, tail queues, and circular queues.
+ *
+ * A singly-linked list is headed by a single forward pointer. The
+ * elements are singly linked for minimum space and pointer manipulation
+ * overhead at the expense of O(n) removal for arbitrary elements. New
+ * elements can be added to the list after an existing element or at the
+ * head of the list. Elements being removed from the head of the list
+ * should use the explicit macro for this purpose for optimum
+ * efficiency. A singly-linked list may only be traversed in the forward
+ * direction. Singly-linked lists are ideal for applications with large
+ * datasets and few or no removals or for implementing a LIFO queue.
+ *
+ * A list is headed by a single forward pointer (or an array of forward
+ * pointers for a hash table header). The elements are doubly linked
+ * so that an arbitrary element can be removed without a need to
+ * traverse the list. New elements can be added to the list before
+ * or after an existing element or at the head of the list. A list
+ * may only be traversed in the forward direction.
+ *
+ * A simple queue is headed by a pair of pointers, one the head of the
+ * list and the other to the tail of the list. The elements are singly
+ * linked to save space, so elements can only be removed from the
+ * head of the list. New elements can be added to the list after
+ * an existing element, at the head of the list, or at the end of the
+ * list. A simple queue may only be traversed in the forward direction.
+ *
+ * A tail queue is headed by a pair of pointers, one to the head of the
+ * list and the other to the tail of the list. The elements are doubly
+ * linked so that an arbitrary element can be removed without a need to
+ * traverse the list. New elements can be added to the list before or
+ * after an existing element, at the head of the list, or at the end of
+ * the list. A tail queue may be traversed in either direction.
+ *
+ * A circle queue is headed by a pair of pointers, one to the head of the
+ * list and the other to the tail of the list. The elements are doubly
+ * linked so that an arbitrary element can be removed without a need to
+ * traverse the list. New elements can be added to the list before or after
+ * an existing element, at the head of the list, or at the end of the list.
+ * A circle queue may be traversed in either direction, but has a more
+ * complex end of list detection.
+ *
+ * For details on the use of these macros, see the queue(3) manual page.
+ */
+
+/*
+ * List definitions.
+ */
+#define LIST_HEAD(name, type) \
+struct name { \
+ struct type *lh_first; /* first element */ \
+}
+
+#define LIST_HEAD_INITIALIZER(head) \
+ { NULL }
+
+#define LIST_ENTRY(type) \
+struct { \
+ struct type *le_next; /* next element */ \
+ struct type **le_prev; /* address of previous next element */ \
+}
+
+/*
+ * List functions.
+ */
+#define LIST_INIT(head) do { \
+ (head)->lh_first = NULL; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_INSERT_AFTER(listelm, elm, field) do { \
+ if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
+ (listelm)->field.le_next->field.le_prev = \
+ &(elm)->field.le_next; \
+ (listelm)->field.le_next = (elm); \
+ (elm)->field.le_prev = &(listelm)->field.le_next; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
+ (elm)->field.le_prev = (listelm)->field.le_prev; \
+ (elm)->field.le_next = (listelm); \
+ *(listelm)->field.le_prev = (elm); \
+ (listelm)->field.le_prev = &(elm)->field.le_next; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.le_next = (head)->lh_first) != NULL) \
+ (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
+ (head)->lh_first = (elm); \
+ (elm)->field.le_prev = &(head)->lh_first; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_REMOVE(elm, field) do { \
+ if ((elm)->field.le_next != NULL) \
+ (elm)->field.le_next->field.le_prev = \
+ (elm)->field.le_prev; \
+ *(elm)->field.le_prev = (elm)->field.le_next; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_FOREACH(var, head, field) \
+ for ((var) = ((head)->lh_first); \
+ (var); \
+ (var) = ((var)->field.le_next))
+
+/*
+ * List access methods.
+ */
+#define LIST_EMPTY(head) ((head)->lh_first == NULL)
+#define LIST_FIRST(head) ((head)->lh_first)
+#define LIST_NEXT(elm, field) ((elm)->field.le_next)
+
+
+/*
+ * Singly-linked List definitions.
+ */
+#define SLIST_HEAD(name, type) \
+struct name { \
+ struct type *slh_first; /* first element */ \
+}
+
+#define SLIST_HEAD_INITIALIZER(head) \
+ { NULL }
+
+#define SLIST_ENTRY(type) \
+struct { \
+ struct type *sle_next; /* next element */ \
+}
+
+/*
+ * Singly-linked List functions.
+ */
+#define SLIST_INIT(head) do { \
+ (head)->slh_first = NULL; \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
+ (elm)->field.sle_next = (slistelm)->field.sle_next; \
+ (slistelm)->field.sle_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_INSERT_HEAD(head, elm, field) do { \
+ (elm)->field.sle_next = (head)->slh_first; \
+ (head)->slh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_REMOVE_HEAD(head, field) do { \
+ (head)->slh_first = (head)->slh_first->field.sle_next; \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_REMOVE(head, elm, type, field) do { \
+ if ((head)->slh_first == (elm)) { \
+ SLIST_REMOVE_HEAD((head), field); \
+ } \
+ else { \
+ struct type *curelm = (head)->slh_first; \
+ while(curelm->field.sle_next != (elm)) \
+ curelm = curelm->field.sle_next; \
+ curelm->field.sle_next = \
+ curelm->field.sle_next->field.sle_next; \
+ } \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_FOREACH(var, head, field) \
+ for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
+
+/*
+ * Singly-linked List access methods.
+ */
+#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
+#define SLIST_FIRST(head) ((head)->slh_first)
+#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
+
+
+/*
+ * Singly-linked Tail queue declarations.
+ */
+#define STAILQ_HEAD(name, type) \
+struct name { \
+ struct type *stqh_first; /* first element */ \
+ struct type **stqh_last; /* addr of last next element */ \
+}
+
+#define STAILQ_HEAD_INITIALIZER(head) \
+ { NULL, &(head).stqh_first }
+
+#define STAILQ_ENTRY(type) \
+struct { \
+ struct type *stqe_next; /* next element */ \
+}
+
+/*
+ * Singly-linked Tail queue functions.
+ */
+#define STAILQ_INIT(head) do { \
+ (head)->stqh_first = NULL; \
+ (head)->stqh_last = &(head)->stqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
+ (head)->stqh_last = &(elm)->field.stqe_next; \
+ (head)->stqh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.stqe_next = NULL; \
+ *(head)->stqh_last = (elm); \
+ (head)->stqh_last = &(elm)->field.stqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
+ (head)->stqh_last = &(elm)->field.stqe_next; \
+ (listelm)->field.stqe_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_REMOVE_HEAD(head, field) do { \
+ if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
+ (head)->stqh_last = &(head)->stqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_REMOVE(head, elm, type, field) do { \
+ if ((head)->stqh_first == (elm)) { \
+ STAILQ_REMOVE_HEAD((head), field); \
+ } else { \
+ struct type *curelm = (head)->stqh_first; \
+ while (curelm->field.stqe_next != (elm)) \
+ curelm = curelm->field.stqe_next; \
+ if ((curelm->field.stqe_next = \
+ curelm->field.stqe_next->field.stqe_next) == NULL) \
+ (head)->stqh_last = &(curelm)->field.stqe_next; \
+ } \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->stqh_first); \
+ (var); \
+ (var) = ((var)->field.stqe_next))
+
+#define STAILQ_CONCAT(head1, head2) do { \
+ if (!STAILQ_EMPTY((head2))) { \
+ *(head1)->stqh_last = (head2)->stqh_first; \
+ (head1)->stqh_last = (head2)->stqh_last; \
+ STAILQ_INIT((head2)); \
+ } \
+} while (/*CONSTCOND*/0)
+
+/*
+ * Singly-linked Tail queue access methods.
+ */
+#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
+#define STAILQ_FIRST(head) ((head)->stqh_first)
+#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
+
+
+/*
+ * Simple queue definitions.
+ */
+#define SIMPLEQ_HEAD(name, type) \
+struct name { \
+ struct type *sqh_first; /* first element */ \
+ struct type **sqh_last; /* addr of last next element */ \
+}
+
+#define SIMPLEQ_HEAD_INITIALIZER(head) \
+ { NULL, &(head).sqh_first }
+
+#define SIMPLEQ_ENTRY(type) \
+struct { \
+ struct type *sqe_next; /* next element */ \
+}
+
+/*
+ * Simple queue functions.
+ */
+#define SIMPLEQ_INIT(head) do { \
+ (head)->sqh_first = NULL; \
+ (head)->sqh_last = &(head)->sqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
+ (head)->sqh_last = &(elm)->field.sqe_next; \
+ (head)->sqh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.sqe_next = NULL; \
+ *(head)->sqh_last = (elm); \
+ (head)->sqh_last = &(elm)->field.sqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
+ (head)->sqh_last = &(elm)->field.sqe_next; \
+ (listelm)->field.sqe_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
+ if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
+ (head)->sqh_last = &(head)->sqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_REMOVE(head, elm, type, field) do { \
+ if ((head)->sqh_first == (elm)) { \
+ SIMPLEQ_REMOVE_HEAD((head), field); \
+ } else { \
+ struct type *curelm = (head)->sqh_first; \
+ while (curelm->field.sqe_next != (elm)) \
+ curelm = curelm->field.sqe_next; \
+ if ((curelm->field.sqe_next = \
+ curelm->field.sqe_next->field.sqe_next) == NULL) \
+ (head)->sqh_last = &(curelm)->field.sqe_next; \
+ } \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->sqh_first); \
+ (var); \
+ (var) = ((var)->field.sqe_next))
+
+/*
+ * Simple queue access methods.
+ */
+#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
+#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
+#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
+
+
+/*
+ * Tail queue definitions.
+ */
+#define _TAILQ_HEAD(name, type, qual) \
+struct name { \
+ qual type *tqh_first; /* first element */ \
+ qual type *qual *tqh_last; /* addr of last next element */ \
+}
+#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
+
+#define TAILQ_HEAD_INITIALIZER(head) \
+ { NULL, &(head).tqh_first }
+
+#define _TAILQ_ENTRY(type, qual) \
+struct { \
+ qual type *tqe_next; /* next element */ \
+ qual type *qual *tqe_prev; /* address of previous next element */\
+}
+#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
+
+/*
+ * Tail queue functions.
+ */
+#define TAILQ_INIT(head) do { \
+ (head)->tqh_first = NULL; \
+ (head)->tqh_last = &(head)->tqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
+ (head)->tqh_first->field.tqe_prev = \
+ &(elm)->field.tqe_next; \
+ else \
+ (head)->tqh_last = &(elm)->field.tqe_next; \
+ (head)->tqh_first = (elm); \
+ (elm)->field.tqe_prev = &(head)->tqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.tqe_next = NULL; \
+ (elm)->field.tqe_prev = (head)->tqh_last; \
+ *(head)->tqh_last = (elm); \
+ (head)->tqh_last = &(elm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
+ (elm)->field.tqe_next->field.tqe_prev = \
+ &(elm)->field.tqe_next; \
+ else \
+ (head)->tqh_last = &(elm)->field.tqe_next; \
+ (listelm)->field.tqe_next = (elm); \
+ (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
+ (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
+ (elm)->field.tqe_next = (listelm); \
+ *(listelm)->field.tqe_prev = (elm); \
+ (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_REMOVE(head, elm, field) do { \
+ if (((elm)->field.tqe_next) != NULL) \
+ (elm)->field.tqe_next->field.tqe_prev = \
+ (elm)->field.tqe_prev; \
+ else \
+ (head)->tqh_last = (elm)->field.tqe_prev; \
+ *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->tqh_first); \
+ (var); \
+ (var) = ((var)->field.tqe_next))
+
+#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
+ for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
+ (var); \
+ (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
+
+#define TAILQ_CONCAT(head1, head2, field) do { \
+ if (!TAILQ_EMPTY(head2)) { \
+ *(head1)->tqh_last = (head2)->tqh_first; \
+ (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
+ (head1)->tqh_last = (head2)->tqh_last; \
+ TAILQ_INIT((head2)); \
+ } \
+} while (/*CONSTCOND*/0)
+
+/*
+ * Tail queue access methods.
+ */
+#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
+#define TAILQ_FIRST(head) ((head)->tqh_first)
+#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
+
+#define TAILQ_LAST(head, headname) \
+ (*(((struct headname *)((head)->tqh_last))->tqh_last))
+#define TAILQ_PREV(elm, headname, field) \
+ (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
+
+
+/*
+ * Circular queue definitions.
+ */
+#define CIRCLEQ_HEAD(name, type) \
+struct name { \
+ struct type *cqh_first; /* first element */ \
+ struct type *cqh_last; /* last element */ \
+}
+
+#define CIRCLEQ_HEAD_INITIALIZER(head) \
+ { (void *)&head, (void *)&head }
+
+#define CIRCLEQ_ENTRY(type) \
+struct { \
+ struct type *cqe_next; /* next element */ \
+ struct type *cqe_prev; /* previous element */ \
+}
+
+/*
+ * Circular queue functions.
+ */
+#define CIRCLEQ_INIT(head) do { \
+ (head)->cqh_first = (void *)(head); \
+ (head)->cqh_last = (void *)(head); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ (elm)->field.cqe_next = (listelm)->field.cqe_next; \
+ (elm)->field.cqe_prev = (listelm); \
+ if ((listelm)->field.cqe_next == (void *)(head)) \
+ (head)->cqh_last = (elm); \
+ else \
+ (listelm)->field.cqe_next->field.cqe_prev = (elm); \
+ (listelm)->field.cqe_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
+ (elm)->field.cqe_next = (listelm); \
+ (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
+ if ((listelm)->field.cqe_prev == (void *)(head)) \
+ (head)->cqh_first = (elm); \
+ else \
+ (listelm)->field.cqe_prev->field.cqe_next = (elm); \
+ (listelm)->field.cqe_prev = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
+ (elm)->field.cqe_next = (head)->cqh_first; \
+ (elm)->field.cqe_prev = (void *)(head); \
+ if ((head)->cqh_last == (void *)(head)) \
+ (head)->cqh_last = (elm); \
+ else \
+ (head)->cqh_first->field.cqe_prev = (elm); \
+ (head)->cqh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.cqe_next = (void *)(head); \
+ (elm)->field.cqe_prev = (head)->cqh_last; \
+ if ((head)->cqh_first == (void *)(head)) \
+ (head)->cqh_first = (elm); \
+ else \
+ (head)->cqh_last->field.cqe_next = (elm); \
+ (head)->cqh_last = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_REMOVE(head, elm, field) do { \
+ if ((elm)->field.cqe_next == (void *)(head)) \
+ (head)->cqh_last = (elm)->field.cqe_prev; \
+ else \
+ (elm)->field.cqe_next->field.cqe_prev = \
+ (elm)->field.cqe_prev; \
+ if ((elm)->field.cqe_prev == (void *)(head)) \
+ (head)->cqh_first = (elm)->field.cqe_next; \
+ else \
+ (elm)->field.cqe_prev->field.cqe_next = \
+ (elm)->field.cqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->cqh_first); \
+ (var) != (const void *)(head); \
+ (var) = ((var)->field.cqe_next))
+
+#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
+ for ((var) = ((head)->cqh_last); \
+ (var) != (const void *)(head); \
+ (var) = ((var)->field.cqe_prev))
+
+/*
+ * Circular queue access methods.
+ */
+#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
+#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
+#define CIRCLEQ_LAST(head) ((head)->cqh_last)
+#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
+#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
+
+#define CIRCLEQ_LOOP_NEXT(head, elm, field) \
+ (((elm)->field.cqe_next == (void *)(head)) \
+ ? ((head)->cqh_first) \
+ : (elm->field.cqe_next))
+#define CIRCLEQ_LOOP_PREV(head, elm, field) \
+ (((elm)->field.cqe_prev == (void *)(head)) \
+ ? ((head)->cqh_last) \
+ : (elm->field.cqe_prev))
+
+#endif /* sys/queue.h */